

8 TeV ZZ Cross Section Measurement

Advait Nagarkar The Ohio State University

ATLAS Collaboration

11 January 2013

Introduction

- ► Measured the $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$ cross section in 5.8 fb⁻¹ of 8 TeV data.
- ▶ $\ell = e$ or μ , where ℓ comes either from $Z \to \ell^+ \ell^-$ or the decay of a τ from $Z \to \tau^+ \tau^-$.
- Measured in both an experimentally accessible fiducial volume and extrapolated to the total phase space.
- ► CONF Note: ATLAS-CONF-2012-090 (https://cdsweb.cern.ch/record/1460409)
- Support Document (restricted to ATLAS): ATL-COM-PHYS-2012-772 (https://cdsweb.cern.ch/record/1454147)
- ► Thanks to my co-editor Nick Edwards and the SM ZZ analysis team for their work in getting this result in time to support the Higgs result at ICHEP.

Overview

- Motivation
- Analysis Strategy
- ATLAS Detector
- ► Trigger/Data Acquisition
- Event Reconstruction
- Monte Carlo Simulation
- Event Selection
- Background Estimation
- Systematic Uncertainties
- Kinematic Distributions
- Cross Section Measurement

Motivation

- Want to test Standard Model (SM) predictions at new high-energy frontier!
- Precise measurement of SM ZZ production is an important test of SM electroweak theory.
- ▶ Plan to eventually set limits on the SM forbidden production mechanism.
- Four-lepton signature is the "golden channel" for many searches, in which SM ZZ production is the major background.

Analysis Strategy

- ▶ Want to measure ZZ production cross section.
- ▶ Identify ZZ candidate events in pp collision data:
 - 1. Detect leptons produced in the hard-scattering process.
 - 2. Identify opposite-sign, same-flavor lepton pairs.
 - Use them to reconstruct Z-bosons and thereby identify candidates.
- Estimate background using the data-driven fake-factor method.
- Relate observed signal yield to production cross section using Monte Carlo (MC) simulation.
- Fit the production cross section using the maximum likelihood method.

ATLAS and the LHC

- ► A Toroidal LHC ApparatuS (ATLAS) detector at Large Hadron Collider (LHC).
- Used to study proton-proton collisions.
- Consists of four main parts:
 - ► Inner Detector (ID)
 - Calorimeters
 - Muon Spectrometer (MS)
 - Magnets

ATLAS: Inner Detector

- Charged particle tracking detector.
- ▶ Covers region: $|\eta| < 2.5$.
- Consists of three main parts:
 - Silicon pixel detector
 - Silicon strip detector (SCT)
 - Straw-tube detector (TRT)
- Includes diamond detector (BCM) in forward region, used to measure luminosity.

ATLAS: Calorimeter System

- Uses two types of active material:
 - ► Liquid argon (LAr)
 - Scintillating tile
- Covers region: $|\eta| < 4.9$.
- Consists of three calorimeters:
 - ► EM (LAr)
 - ► Hadronic (LAr & Tile)
 - Forward (LAr)

ATLAS: Muon Spectrometer

- Charged particle tracking detector.
- Covers region: $|\eta| < 2.7$.
- Composed of three layers of precision chambers, made from:
 - Drift-tubes (MDT)
 - Multi-wire proportional chambers (CSC)
- Multiple layers adjacent to the precision layers, used for triggering, made from:
 - Resistive plate chambers (RPC)
 - Multi-wire proportional chambers (TGC)

ATLAS: Magnets

- ► Two magnets:
 - ∼ 2 T solenoid: surrounding the ID
 - $ho \sim 0.5-1$ T toroid: surrounded by the MS
- ▶ Solenoid bends charged particles in ϕ
- lackbox Toroid bends charged particles in η

Trigger & Data Acquisition

- ► LHC produces collisions for ATLAS with 50 ns period (20 MHz event rate).
- ▶ ATLAS uses three-level trigger (L1, L2, and EF) to select only \sim 500 Hz to record.
- At each level, select events by looking for a high- p_T (> 24 GeV) lepton (e or μ) isolated from other charged particle activity.
- ► Electrons are required to have deposited less energy in hadronic calorimeters for L1 trigger.

11

Reconstruction

Inner Detector:

- Fit ID tracks starting with three silicon (pixel+strip) hits and extending them in helix through solenoid field to find additional hits before fitting the helix.
- Fit vertices by combining tracks whose extrapolations to the beam line are close together; define new vertex when a track is more than 7σ away.
- ▶ Primary vertex (PV) has highest $\sum_{\text{tracks}} p_{\text{T}}^2$.

Calorimeters:

▶ Define EM calorimeter clusters by using fixed window to scan through calorimeter cells to find those that have significant energy, defining the barycenter of each deposition as a precluster, and then defining the EM cluster as a fixed window around the precluster.

Reconstruction (ctd.)

Muon Spectrometer:

- ► Fit straight-line track segments in each layer using hits from precision chambers plus hits from adjacent trigger chambers.
- ► Fit muon tracks by combining track segements from different precision layers in path through toroid field.

Leptons:

- Define electrons by combining ID tracks with EM clusters.
- ▶ Define muons by combining ID tracks and MS tracks (or segments not included in tracks for muons used to reconstruct Z-bosons).

Monte Carlo Simulation

- Want to translate SM cross section into expected event yield.
- ▶ Use Monte Carlo generators to simulate $pp \to ZZ + X \to \ell^+\ell^-\ell'^+\ell'^- + X$ and detector response.
- ▶ Simulation of quark annihilation process $q\bar{q} \to ZZ \to \ell^+\ell^-\ell'^+\ell'^-$ done in six steps:
 - ▶ Parton distribution function (PDF) internal structure of interacting protons: CT10
 - ► Matrix element (ME) hard scattering interaction: POWHEGBOX
 - ► Underlying event (UE) remainder of interaction between colliding protons: Pythia8
 - ▶ Parton shower (PS) initial/final state radiation (due to both QED and QCD processes), hadronization, and decays into stable particles: PYTHIA8
 - ▶ PS revision τ -lepton decays and hard ($p_T > 20$ GeV) final state photon radiation simulated by PYTHIA8 & PHOTOS respectively
 - Detector simulation simulation of the interactions with detector: GEANT4
- ▶ Gluon fusion process $gg \to ZZ \to \ell^+\ell^-\ell'^+\ell'^-$ (~ 7% of SM expectation) simulated using GG2ZZ ME+JIMMY UE+HERWIG PS+TAUOLA τ -lepton decays. ◆□▶ ◆周▶ ◆団▶ ◆ 団 ◆ のの◆

Monte Carlo Simulation: Backgrounds

Process	PDF	ME	UE	PS
Z + jets	CT10	PowhegBox	Рутніа8	
t₹	CT10	MC@NLO	J_{IMMY}	Herwig
$W^{\pm}Z$	CT10	РоwневВох	Рутніа8	

▶ Various background processes simulated separately with different simulation programs (per table).

Event Selection: Electrons

- First selected by standard quality criteria:
 - ▶ Must be reconstructed in well-understood kinematic region:
 - ▶ p_T > 15 GeV
 - ▶ $|\eta| < 2.47$
 - Must be reconstructed in a region without hardware problems.
- ► Standard set of identification criteria (loose++) applied, including requirements on:
 - ▶ Hits on track in various ID subsystems
 - Quality of track-cluster matching
 - Cluster shower shape (narrowness and penetration depth)

Event Selection: Muons

- First selected using a standard track selection:
 - ▶ Hits in multiple layers of both silicon tracking detectors.
 - ▶ Limits on sensors traversed without registering hits.
 - Successful extension of silicon track into TRT with many hits and few outliers within TRT acceptance.
- ▶ Must be reconstructed in well-understood kinematic region:
 - ▶ p_T > 15 GeV
 - ▶ $|\eta| < 2.5$

Event Selection: Lepton Isolation & Impact Parameter

- ▶ Required to be isolated, nearby (with $\Delta R < 0.2$ w.r.t. the lepton ID track) activity required to satisfy:
 - ▶ Scalar sum momentum of all $p_T > 1$ GeV tracks must be < 15% of the lepton $p_{\rm T}$.
 - ► Scalar sum energy of all calorimeter cells must be < 30% of the lepton p_{T} .
- Required to originate at the PV, impact parameter required to satisfy:
 - \rightarrow d_0 of muons (electrons) within 3.5 (6) standard deviations of the unbiased PV1
 - z₀ within 2 mm of the unbiased PV

¹primary vertex as reconstructed excluding the track whose impact parameter is being calculated ◆□▶ ◆周▶ ◆量▶ ◆量▶ ■ めぬ◎

Event Selection

- Events only considered if no detector system had any problems.
- ▶ Events required to have reconstructed PV with \geq 3 tracks.
- ▶ Lepton candidates selected in remaining events.
- Require exactly 4 leptons that form two opposite-sign, same-flavor pairs.
- ▶ Lepton pairs used to reconstruct *Z*-boson candidates.
- Resolve ambiguity in pairing for the 4e and 4μ channels by minimizing:

$$|m(Z1) - m^{Z}| + |m(Z2) - m^{Z}|$$

- Z candidates required to have invariant mass between 66 and 116 GeV.
- $ightharpoonup
 ightharpoonup m_{ZZ}$ is always > 132 GeV by construction (avoiding overlap with the Higgs region).
- ▶ Events only accepted if a lepton from $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$ decay satisfied trigger.

Background Estimation

- Very little SM background production of 4 prompt leptons from vector boson decays.
- Background is from events with some prompt leptons (L) along with some number of lepton-like jets (J).
- ▶ J are objects mis-identified as leptons or leptons from non-prompt sources.
- ▶ This includes several SM processes that produce multiple prompt leptons in association with jets (Z + jets, $t\bar{t}$, $Z\gamma$, etc.).
- Estimated using the data-driven fake factor method.
- Simulated background samples only used to validate yields in and subtract prompt lepton contamination from the control regions used in the data-driven background estimation.

A. Nagarkar Seminar 20

Background Estimation: Fake Factor Method

- ▶ Define control regions by inverting object selection for 1 and 2 objects.
- Measure pass:fail ratio, called the fake factor (FF), of selection criteria to be inverted in both Z+L and Z+J tagged samples, after subtracting contamination from W[±]Z and ZZ.
- ► Scale the yield in the 3 lepton+1 lepton-like jet (LLLJ) control region by FF to extrapolate into the signal region.
- ► Subtract the contamination from 2 lepton+2 lepton-like jet (LLJJ) events using the same FF.
- Subtract the contamination of both LLLJ and LLJJ regions by ZZ events using simulation (assign 10% normalization uncertainty).
- ► Therefore, the background is:

$$B = (N(LLLJ) - N_{ZZ}^{LLLJ}) \times FF - (N(LLJJ) - N_{ZZ}^{LLJJ}) \times FF^{2}$$

Background Estimation: Electron Fake Factor

- Electron fake factor is pass:fail ratio of loose++ and isolation requirements (A/B+D).
- Exclude events that fail both requirements to remain closer to signal region (region C).
- ▶ Region B allows for estimation of mis-identified hadrons.
- ▶ Region D allows for estimation of electrons from non-prompt sources.
- Use difference between measured and simulated fake-factors as the systematic uncertainty.

Background Estimation: Muon Fake Factor Definition

- Muon fake factor is pass:fail ratio of d₀-significance and isolation requirements (A_{B+D}).
- Exclude events that fail both requirements to remain closer to signal region (region C).
- Region B allows for estimation of muons from non-prompt sources (e.g. large angle b decays).
- Region D allows for estimation of mis-identified hadrons (i.e. hadronic punch-through).
- ► Use difference between measured and simulated fake-factors as the systematic uncertainty.

Background Estimation: Result

Item	e ⁺ e ⁻ e ⁺ e ⁻	$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	$e^{+}e^{-}\mu^{+}\mu^{-}$	$\ell^+\ell^-\ell'^+\ell'^-$
$(+)$ $N_{LLLJ} \times FF$	1.0±0.4±0.3	$0.6\pm0.6\pm0.4$	$1.8\pm0.9\pm1.0$	3.4±1.2±1.7
from N _{LLLJ}	8	1	7	16
$(-)N_{LLJJ} \times FF^2$	$0.1 \pm 0.1 \pm 0.1$	0	$0.2 \pm 0.1 \pm 0.1$	$0.3\pm0.1\pm0.2$
from N _{IIII}	12	0	8	20
(-)ZZ correction	$0.3\pm0.1\pm0.1$	$0.5 \pm 0.1 \pm 0.4$	$1.0\pm0.1\pm0.6$	$1.9\pm0.1\pm1.1$
Fake estimate, $N_{4\ell}^{\mathrm{fake}}$	0.6±0.4±0.2	$0.1^{+0.6}_{-0.1}\pm0.1$	$0.6^{+0.9}_{-0.6}\pm0.3$	1.3±1.2±0.5

- First uncertainty is statistical, second is systematic.
- ▶ Background estimate is smaller for muons than electrons.
- Total background is consistent with 0.

Systematic Uncertainties

- Determined uncertainties in simulation using independent measurements of various detector efficiencies and energy/momentum scales/resolutions.
- Reweighted simulated samples based on efficiency measurements and corrected energy/momentum scales/resolutions.
- ightharpoonup Calculated changes in expected yield under variations of each correction by $\pm 1\sigma$ to get uncertainties in expectation.
- Determined uncertainty in background estimate to be the change in background yield based on uncertainties in the fake-factor (viz. statistics and background subtraction).

Systematic Uncertainties: Experimental

- Uncertainties in simulation (estimated using control studies in data).
- Electrons:
 - ► Energy scale: <0.1%
 - ► Energy resolution: 0.2%
 - ▶ Reconstruction efficiency: 1.2%
 - ► Identification efficiency: 1.8%
- Muons:
 - ► Momentum scale: <0.1%
 - ▶ ID Momentum resolution: 0.1%
 - ▶ MS Momentum resolution: <0.1%
 - ► Reconstruction efficiency: 0.6%
- ► Trigger efficiency: 0.2%
- ► Isolation/IP selection efficiency: 0.7% (0.5%) from electrons (muons)

Systematic Uncertainties: Theoretical

- Uncertainties in choices of theoretical parameters.
- ▶ PDF: 2.0%
 - Central values of acceptance and theoretical prediction calculated using CT10.
 - Uncertainties calculated using the 52 CT10 error eigenvectors and comparison to MSTW2008, calculated using MCFM.
- ▶ Renormalization and Factorization Scale: 0.2%
 - ▶ Central values calculated with both scales fixed at m_Z .
 - Uncertainties taken by varying the scales up and down by a factor of 2, calculated using MCFM.
- ► Parton Shower Effect: 1.0%
 - ▶ Evaluate the effect of parton shower on fiducial acceptance.
 - Uncertainties taken by comparing acceptance before and after the PYTHIA8 parton shower.

Kinematic Distributions: Z Mass Distribution

- Background is omitted from plot.
- ▶ Clear enhancement in red box that delimits signal region.

Kinematic Distributions: Z Mass

- Background in plots is a MC template scaled to the data-driven background estimate.
- Very small background, visible e.g. in the 96-100 GeV bin of the right (subleading Z) plot.
- ▶ Good agreement in Z line shape between data and MC.
- ► Leading and subleading Z both have normal line shape, as expected.

Kinematic Distributions: $Z p_T$

- Background in plots is a MC template scaled to the data-driven background estimate.
- ▶ Good agreement of both Z p_T spectra between data and MC.
- ▶ Distribution of leading Z p_T is harder than that of subleading Z p_T , as expected.

Kinematic Distributions: ZZ System Mass & p_T

- Background in plots is a MC template scaled to the data-driven background estimate.
- Good agreement in shapes of both distributions.

A. Nagarkar Seminar 31

Observed Yields

Final state	eeee	μμμμ	$ee\mu\mu$	combined ($\ell\ell\ell\ell$)
Observed	23	22	40	85
Expected Signal	16.5±0.8	20.9 ± 0.4	33.2 ± 0.9	70.5 ± 1.7
Background	0.6±0.4±0.2	$0.1^{+0.6}_{-0.1}{\pm}0.1$	$0.6^{+0.9}_{-0.6}\pm0.3$	$1.3{\pm}1.2{\pm}0.5$

▶ Results are consistent with expectation ($\sim 1.6\sigma$ upward fluctuation).

Cross Section: Fiducial Acceptance

The expectation for the event yield in the signal region can be written as a function of the cross section (σ_{ZZ}) , integrated luminosity (\mathcal{L}) , branching fraction $(\mathcal{B}r(ZZ \to \ell^+\ell^-\ell'^+\ell'^-))$, fiducial acceptance (A_{ZZ}) , detection efficiency (C_{ZZ}) , and ratio of $\tau+X$ contribution to e and μ only contribution to signal (f_τ) as:

$$N = \mathcal{L} \times \sigma_{ZZ} \times \mathcal{B}r(ZZ \to \ell^+\ell^-\ell'^+\ell'^-) \times A_{ZZ} \times C_{ZZ} \times (1 + f_{\tau}) + N_{bkg}$$

The fiducial acceptance is defined as the fraction of events in the total phase space that fall within the fiducial volume:

$$A_{ZZ} = \frac{N^{\text{MC Fiducial Volume}}_{\text{Generated } ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-}}{N^{\text{MC Total Phase Space}}_{\text{Generated } ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-}}$$

- Fiducial volume is defined as the phase-space volume within which candidate events can be reconstructed:
 - Same invariant mass range for Z bosons (viz. 66-116 GeV)
 - ▶ All leptons required to have $p_T > 15$ GeV
 - ▶ All leptons required to have $|\eta| < 2.5$
 - $\Delta R(\ell, \ell') > 0.2$ for all pairs of charged leptons
- ▶ Using MCFM in the $e^+e^-\mu^+\mu^-$ channel, calculate that:

$$A_{ZZ} = 0.500 \pm 0.001 \pm 0.012$$

Assume A_{ZZ} to be the same in the $e^+e^-e^+e^-$ and $\mu^+\mu^-\mu^+\mu^-$ channels by lepton universality.

Cross Section: Detection Efficiency

Channel	C_{ZZ}
$e^+e^-e^+e^-$	$0.61 {\pm} 0.01 {\pm} 0.03$
$\mu^+\mu^-\mu^+\mu^-$	$0.77{\pm}0.01{\pm}0.02$
$e^+e^-\mu^+\mu^-$	$0.68{\pm}0.01{\pm}0.02$
$\ell^+\ell^-\ell'^+\ell'^-$	$0.69{\pm}0.01{\pm}0.02$

The detection efficiency is calculated from simulation as the ratio of the expected signal yield to the generated yield in the fiducial volume:

$$C_{ZZ} = \frac{N^{\text{MC}} (\text{Signal Region}) \times \text{SF}}{N^{\text{MC}} (\text{Fiducial Volume})}$$
 (1)

- ► SF is combined effect of all efficiency corrections used for systematic uncertainty estimation.
- ▶ Muons have higher reconstruction efficiency than electrons.
- ▶ Combined $\ell^+\ell^-\ell'^+\ell'^-$ channel has ~same efficiency as the $e^+e^-\mu^+\mu^-$ channel.

Cross Section: Likelihood Function

▶ Poisson probability to observe N_{obs}^i events given expectation of N_{exp}^i is:

$$P\left(N_{\text{obs}}^{i}; N_{\text{exp}}^{i}\right) = \frac{\left(N_{\text{exp}}^{i}\right)^{N_{\text{obs}}^{i}} \cdot e^{-N_{\text{exp}}^{i}}}{N_{\text{obs}}^{i}!}.$$
 (2)

- For a given N_{obs}^i this can be interpreted as a likelihood function.
- Define measured cross section as value that maximizes likelihood function.

Cross Section: Systematic Uncertainties

▶ Use Gaussian nuisance parameters for systematic uncertainties, defining set of variables $\{x_k\}$ constrained in likelihood function as:

$$L(\sigma_{ZZ}, \{x_k\}) = \prod_{i=1}^{3} \left(\frac{\left(N_{\text{exp}}^{i} (\sigma_{ZZ}, \{x_k\}) \right)^{N_{\text{obs}}^{i}} \cdot e^{-N_{\text{exp}}^{i} (\sigma_{ZZ}, \{x_k\})}}{N_{\text{obs}}^{i}!} \right) \times \prod_{k=1}^{n} \left(e^{-\frac{x_k^2}{2}} \right). \quad (3)$$

- Here N_{exp}^i is as aforementioned and i represents lepton flavor channel.
- ▶ Defining variation in expected signal and background yields due to k^{th} uncertainty source as $\left\{S_k^i\right\}$ and $\left\{B_k^i\right\}$, expected signal and background yields as a function of the $\left\{x_k\right\}$ becomes:

$$N_{\text{sig}}^{i}\left(\left\{x_{k}\right\}\right) = N_{\text{sig}}^{i}\left(0\right) \times \left[1 + \sum_{k=1}^{n}\left(x_{k} \cdot S_{k}^{i}\right)\right],\tag{4}$$

$$N_{\text{bkg}}^{i}(\{x_{k}\}) = N_{\text{bkg}}^{i}(0) \times \left[1 + \sum_{k=1}^{n} \left(x_{k} \cdot B_{k}^{i}\right)\right].$$
 (5)

These nuisance-dependent yields sum to the N_{exp}^i in the likelihood function.

Cross Section: Fit

- ► The likelihood function is maximized using the MINUIT program.
- ► Systematic uncertainties are determined by shifting each nuisance until ln *L* shifts by 0.5 and recalculating the cross section.
- Measured cross section both in the fiducial volume (i.e. fitting $\sigma_{ZZ} \times \mathcal{B}r(ZZ \to \ell^+\ell^-\ell'^+\ell'^-) \times A_{ZZ})$ and the total phase space (i.e. fitting only σ_{ZZ}) as:

	Fiducial Cross Section
Measured	$21.01^{+2.40}_{-2.23}(\mathrm{stat.})^{+0.59}_{-0.49}(\mathrm{syst.}) \pm 0.76(\mathrm{lumi.})$ fb
SM Prediction	$16.75^{+0.95}_{-1.02}$ fb
	Total Cross Section
Measured	$9.26^{+1.06}_{-0.98}({ m stat.})^{+0.36}_{-0.30}({ m syst.}) \pm 0.33({ m lumi.})~{ m pb}$
SM Prediction	$7.41^{+0.40}_{-0.36} \text{ pb}$

► Measured results in agreement with the SM expectations.

Conclusion

- ▶ Measured cross section of ZZ production in the $\ell^+\ell^-\ell'^+\ell'^-$ channel at 8 TeV.
- ▶ Measured in the 66-116 GeV Z-candidate invariant mass range (near the Z pole).
- ▶ Result is consistent with SM prediction (\sim 1.6 σ upward fluctuation).
- Intend to present updated result with full 2012 8 TeV dataset (\sim 20 fb⁻¹) at Moriond.

Questions?

Data & MC Samples

- All data and MC used in the W/Z physics ntuple D3PD format (called NTUP_SMWZ)
- All datasets processed through standard ATLAS reconstruction, through the centrally managed production system
- ▶ Using the standard AllGood_v3 GRL, which requires all data quality metrics except τ -tagging quality to be evaluated as good
- ▶ Using data sample as frozen for ICHEP (a total of $5.8~{\rm fb}^{-1}$), except modified to remove ~ 10 lumiblocks for which nutple production failed